

RDM

Chapitre 12 **EXERCICES**

Feuille n°1

Sollicitations simples – Charges concentrées

EXERCICE 1 (fiche 1)					
a)	De quelle grande théorie la RDM est-elle issue ?				
b)	Citer les trois éléments mis en jeu en RDM :				
c)	Rappeler ce qu'est un matériau homogène :				
d)	Rappeler ce qu'est un matériau isotrope :				
e)	On dor	nne 8 solides ; entourer	r ceux susceptibles	d'être étudiés en RDM :	Trou ébouchant Sphère
	Po	outre en béton armé	Jante de voiture	Arbre de transmission	Paire de lunettes

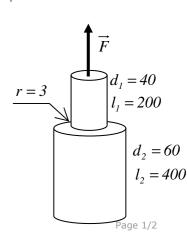
EXERCICE 2 (Traction)

hypothèses?

On considère une tige cylindrique en acier 14 NiCr 11 de diamètre $d=10\ mm$; de longueur $L=500\ mm$ soumise à une force de traction $F=260\ kN$.

f) Que dire des résultats fournis par la RDM si on les applique à des solides qui ne respectent pas ses

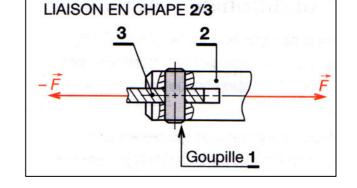
- a) Dire pourquoi on a le droit de l'étudier en RDM.
- b) Calculer en MPa la contrainte normale σ qui règne dans la matière.
- c) En déduire si la pièce casse (par simple comparaison de σ avec la limite élastique $R_{_{e}}$).


On considère un coefficient de sécurité s = 2.

d) Calculer en MPa la résistance pratique à l'extension R_{pe} , et dire si la pièce est-elle toujours correctement dimensionnée ? (par simple comparaison de σ avec la limite pratique élastique R_{pe}).

EXERCICE 3 (Traction)

On considère la pièce ci- contre faite en « Cu Zn 39 Pb 2 » et soumise à une force de traction $F=305\ kN$.

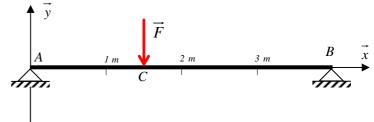

- a) Calculer en MPa la contrainte nominale σ qui règne dans la matière du petit cylindre (c'est le plus fragile des deux).
- b) Déterminer le coefficient de concentration de contrainte K_t .

- c) Calculer en MPa la contrainte maximale σ_{max} qui règne dans la matière.
- On considère un coefficient de sécurité s = 2.
- d) Calculer en MPa la résistance pratique à l'extension R_{pe} .
- e) Conclure quant au bon ou mauvais dimensionnement de la pièce.

EXERCICE 4 (cisaillement)

On s'intéresse à la goupille (1) faite en acier C80. De part les efforts \overrightarrow{F} et $-\overrightarrow{F}$ appliqués aux pièces (2) et (3), la goupille (1) a tendance à être cisaillée. On donne F=1560~daN.

- a) Dessiner la goupille (1) seule et faire apparaître la(les) section(s) sollicitée(s) au cisaillement.
- b) On a affaire à du cisaillement : \square simple \square double On considère un coefficient de sécurité s=4.
- c) Calculer le diamètre d de la goupille pour qu'elle résiste aux efforts qui lui sont appliqués.


EXERCICE 5 (flexion ; un peu difficile...)

On considère une poutre en acier 14 NiCr 11 sur deux appuis en A et B et une charge concentrée \overrightarrow{F} en C .

On a F=20~kN , AB=4~m et AC=1.5~m .

La section droite de la poutre est un carré de côté $c=50\ mm$.

On considère un coefficient de sécurité s = 2.

a) Calculer le moment quadratique $I_{\rm GZ}$ de la section droite.

A partir de l'annexe F:

- b) Pourquoi l'annexe F convient mieux que l'annexe G?
- c) Calculer l'abscisse x_f pour laquelle la déformée est la plus grande (c'est ce qu'on appelle « la flèche »).

Pour l'abscisse x_f précédemment calculée :

- d) Calculer la flèche f; compléter la figure ci-dessus en traçant la déformée et en identifiant x_f et $f(x_f)$.
- e) Calculer le moment de flexion $M_{fZ}(x_f)$ à l'abscisse x_f avec $M_{fZ}(x_f) = (x_f AC) \times F$.
- f) Calculer la contrainte maximale σ_{max} dans la section droite à l'abscisse x_f .
- g) Essayer d'expliquer la très faible valeur de la contrainte σ_{max} .